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ABSTRACT

This study investigates the stochastic properties of the Dickey—Fuller t-test and
T(p — 1) test for multiple structural breaks (in level or slope ) in the trend function
of a stationary time series. In the presence of H (= 2) breaks in the series, the
asymptotic analysis and Monte Carlo simulation indicate some common features of
the tests that are consistent with previous studies and produce some new results as

well.
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1. Introduction

Many papers have been published on unit root tests with structural breaks since
the studies by Perron (1989) and Rappoport and Reichlin (1989)." Perron
(1989) demonstrated that there can be fewer rejections of the unit root null
hypothesis in the Dickey — Fuller (DF) test, which was proposed by Dickey and
Fuller (1979), when a series is generated by a stationary process with a break (also
known as the “Perron phenomenon”). With regard to this problem, Montanes
and Reyes (1998, 1999) have examined the asymptotic behavior of the DF
t-statistic and 7'(p —1) statistic under the alternative hypotheses of “changing
growth” and “crash” (i.e., the stationarity hypotheses with shifts in slope and
level ). Leybourne and Newbold (2000) reported that the “Perron phenomenon”
becomes more severe in the DF t-test when there is a single break within a specific
range of a sample. Furthermore, Sen (2001) studied how the presence of one
break in a stationary process affects Dickey and Fuller's (1981) F-test.”

However, all these previous studies examined only the effects of the presence of

a single break in a series on the hypothesis test.”” Therefore, in this study, we

1) For example, see Banerjee, Lumsdaine and Stock (1992) and Zivot and Andrews (1992) for
the case of an unknown single break and Lumsdaine and Papell (1997) and Lee and
Strazicich (2003) for the case of unknown multiple breaks. On the other hand, Lee (1999)
and Becker, Enders and Lee (2006) have developed the stationarity tests with multiple
structural breaks.

2) Leybourne, Mills and Newbold (1998) and Lee (2000) have discussed the spurious rejection
problem of the DF t-test leading to the possible over-rejection of the unit root null hypothesis
when the data generating process is integrated of order one with a break.

3) Some Japanese macroeconomic time series are suspected to have multiple structural breaks;
for example, real and nominal GDP, private and household consumption expenditures, and
M2 + CD. If these series actually have multiple breaks, they will not be dealt with in the
same framework as the earlier studies.
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generated a time series, y,, using the following model to analyze the case with

multiple structural breaks.
y,=a+pt+d +z,

H
d, = Scaley k, Dummy!',
h=1

z,=p, +E, |p|<1, 1=0,..T, (1)

where Scale is the scale factor of the dummy variables, H is the maximum number
of breaks, ¢, is i.i.d.(0,07), and T + 1 is the sample size. If / denotes the order of a
break (h=1,...,H), then k, is the size of the #" break and Dummy! is its dummy
variable. The structural breaks are considered as shifts in level or shifts in slope.
For shifts in level, Dummy! is defined as Dummy! = DU/, where DU!=1 for
t>7,T and 0 otherwise. 7, is the 4" break fraction, which is defined as 7B, / T for
all 7 (TB, is the 2™ break point), and 0 <7, <7, <---<7,_, <7, <1. For shifts
in slope, Dummy,' is defined as Dummy|' = DT, where DT =t —7,T for t >7,T
and 0 otherwise.

By changing the value of the scale factor of the dummy variable Scale in the
above model, the various models used in previous studies can be expressed. For
example, when Scale takes a value of one, the model becomes the “crash”
alternative model for / =1 (a single break ) and Dummy, = DU, (a shift in level ),
and the “changing growth” alternative model for H = 1and Dummy, = DT, (a shift
in slope), both of which have been used in Montanes and Reyes (1998, 1999).
When Scale takes the values T''%, with H =1and Dummy, = DU, (a shift in level ),
and 77" with H =1 and Dummy, = DT, (a shift in slope) in model (1), the
consequent models are consistent with the ones that have been assumed by

Leybourne and Newbold (2000).
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The objective of this study is to investigate the effects of the presence of multiple
structural breaks in a stationary process on the test of the unit root hypotheses of
the DF t-test and 7(p —1) test. In the next section, the limiting distributions of the
statistics are derived under the model with breaks and the asymptotic behavior of
the statistics is analyzed for various locations and sizes of breaks. In Section 3, a
Monte Carlo simulation is conducted to examine the empirical powers of the tests

in small samples. The conclusions are provided in Section 4.

2. Limiting Behavior of the Dickey—Fuller Tests

2.1. Limiting distributions of the Dickey—Fuller statistics under the model
with multiple structural breaks

The limiting distributions of the DF t-statistic and 7'(p —1) statistic are derived
under model (1), which has multiple (H) structural breaks. In this derivation,
Scale takes values of either one or 7"'? for shifts in level and one or 7"? for shifts
in slope.

The test statistics are obtained in the following way. Let e, | denote the residual
of the regression of y, , on an intercept and time trend, for t =1....,7. Then, the

first difference of ¢, is regressed as follows:
Ae, =ge,_ +error, t =1,....T. 2)

The DF t-statistic is obtained as a usual t-statistic test of the null hypothesis ¢ =0
and the DF 7(p—1) statistic is given by 7@, where ¢ (=p—1) is the estimated
coefficient of ¢, , in (2). The limiting distributions of the statistics are indicated

by the following two theorems.
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Theorem 1. Under model (1) with Scale =1,

(a) For shifis in level (the “crash” alternative model in the case of multiple
breaks),

T2 p _O_J zl_p ) (3)
I+ p){o” +2(1-p)b,,}

e 0(=p)

e e ey, W

(b) For shifts in slope (the “changing growth” alternative model in the case of
multiple breaks), such that at least one k, #0 (h=1,....H),

TV _p by,

J[fo" 22]b23 _bzzl ' <5>
+p

R b
T(p—l)—”)b—z‘, (6)
23

P . . .
where ——> represents convergence in probability. b,,, b,,, b,,, and b,; are given

by

g H-1 H
bll = Zk/?T/,(] —T/1)(3T; _31';, + 1)+2ZZ Lkhfg(l _7/1)(3714‘[/1 —3z'h +1)’
h=1 pege;
where g < h,
1E 4
EZ,Zkg T O (=7 )A=7,)(7, +7, - 1),
bzw = Zk/ffh(l — TI;){T; (ZTh - 3)(1 - 2Th)+ (1 — Th)(zz-h 4 1)}’
h=1
H-1 H
+23 Y kk, 7, (1-1)f, 7,27, - (1 -27,) + (1 -7,)27, + D}, where g < h,
g=1 h=2
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H-1 H

1]|& 2.3 2 2
by = g{;k,ﬁh(l - 7/:)3 - szgkhr; (I-7,)° (27,7, +7, 37, )}, where g < h.

g=1 h=2

The proof is demonstrated in the Appendix.

Theorem 2. Under model (1) with Scale="T"" for shifis in level and Scale=T"""
for shifis in slope, such that at least one k, #0 (h=1,....,H),

o
Tlap
RN P Li=12, 7)
—+cll 013
I+p
2
(o2
—1—+C,1
T(p-1)—Ls—FTP =12, (8)
Ci3

where the subscripts i=1 and 2 denote H times shifts in level and slope,

respectively. c,, ¢,,, and c; are given by

H
= _z k/% -z, )(671? =37,+1)

h=1

Y kkA1-7,)67,7, =37, + D)+ (1-1,)67,7, =37, + D=1 where g < i,

1 h=2

H-1
g=

H
2 _ _ . _
Cp = Zk/w ¢3=by, ¢ =by, ¢y =0, and c,; = by,
h=1

The proof is demonstrated in the Appendix.
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These theorems have several implications. For Scale =1, Theorem 1(a) suggests
that for shifts in level, as 7 — oo, the t-statistic and the 7'(p —1) statistic diverge to
— at rates of 7' and T, respectively. Thus, both the DF tests are consistent
despite the presence of multiple breaks in the series. This fact corresponds to
Proposition 1 in Montanes and Reyes (1999). In Theorem 1(b), for shifts in
slope, the t-statistic diverges at a rate of 7''?, whereas the 7(p—1) statistic
converges in probability to a nonrandom limiting function of locations (z,) and
sizes (k,) of breaks. For Scale=T""? for shifts in level and Scale=T"""7 for shifts
in slope, Theorem 2 indicates that both the statistics converge to nonrandom

limiting functions of 2(H+1) parameters: p, o, 7,, and k,,.

2.2. Effects of two breaks on the Dickey—Fuller tests

In this subsection, the effects of the presence of two breaks on the DF t-test and
T(p—1) test for large samples are considered. Tables 1-3 report the limiting
distributions of the tests for two shifts in level and slope each (H# =2). The
values in the table are computed in the region 0 <7, <7, <1 at 0.01 intervals with
p=09and o =1. Then, the sizes of two breaks, k,,k,, take the following values:
(0.25, 0.25), (1.0, 0.25), (0.25, 1.0), and (1.0, 1.0) for shifts in level and (5, 5),
(20, 5), (5, 20), and (20, 20) for shifts in slope.”

For breaks in slope with Scale =1, Table 1 presents the limiting distributions of
the t-statistic multiplied by the 77> and the 7(p—1) statistic. For T~ '°t,

approximately for 7, 20.5 or 7, =0.71, its limiting distribution takes positive

4) We have also analyzed some cases where one of the two break sizes takes negative values:
(-0.25, 0.25), (—1.0, 0.25), and (0.25, —1.0) for shifts in level and (=5, 5), (=20, 5),
and (5, —20) for shifts in slope. Consequently, for any combination of break sizes, both the
DF statistics indicate behaviors similar to those observed in Table 1(a), 1(b), and 1(c) when

the absolute value of the break size, | &,

,increases. Therefore, the results are omitted here.
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values, which implies that there would be fewer rejections of the unit root null
hypothesis in these regions in the usual DF t-test with breaks as the t-statistic (/)
tends to +© as 7 —> 0. For the T(p —1) test, the statistic takes values higher than
the corresponding critical values in all the cases except when two break fractions,
(r,,7,), are close to (0.01,0.02) for each pair of (k,,k,) and (0.01,0.99) for the small
size of the second break (k, =5) 2 This result implies that the 7(p —1) test may
fail to reject the unit root null hypothesis in many cases, excluding the specific

cases described above.

5) The critical values are —29.4, —21.7, and —18.3 at 1%, 5%, and 10% significance levels,
respectively, in Fuller (1996).
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For Scale = T"'” for shifts in level and Scale=T"""? for shifts in slope, the results
of the t-test are presented in Tables 2 and 3, respectively. For shifts in level, Table
2 indicates that as k, or k, increase(s), almost all the probability limits tend to
rise.”  Consequently, this climb in the values of the limiting distribution can cause
the “Perron phenomenon.” For shifts in slope, Table 3 indicates that the limiting
value of the statistic becomes as low as, (z,,7,) — (0,0), (L1), or (0,]). However,
besides these three regions, we expect fewer rejections of the unit root null
hypothesis, particularly in the regions 7, <0.9 and 0.51<7, <0.91. The results of
the T(p—1) test for shifts in level and slope are omitted in this paper as the
characteristic of the limiting distribution of the test is analogous to that of the t-test

for both.

6) Forr, =0.0land 0.11<7, <0.91, the limits tend to decline as £, increases.
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3. Monte Carlo Analysis

To investigate the behavior of the DF t-statistic and 7'(p —1) statistic in finite
samples, a Monte Carlo simulation is implemented in this section. The series, y,,
is generated by model (1) with H =2, o = =1, and p=0.9, where Scale takes
values of either one or 7''"/? for shifts in level and one or 7" for shifts in slope.
Further, ¢, is i..d.N(0,]). The sample size is 200 and the number of replications is
5000. The empirical powers of both the DF tests at the nominal level (5%) are
computed over the same combinations of (7,,7,) and (k,, k,) as in Tables 1-37 In
this simulation, when there is no break in the series, the arithmetic means of the
empirical powers of the t-test and the 7(p—1) test at 5% significance level are
about 66% and 70%, respectively. To evaluate the empirical powers in the
presence of two breaks, we treat these means as baseline values following
Leybourne and Newbold (2000).

The results of the shifts in level model with Scale =1, which are not reported
here, indicate that all the empirical powers in both the DF tests are very close to
their baseline values. Thus, the tests are not affected by the presence of breaks
even in small samples. As regards the case of shifts in slope with Scale =1, Table
4 presents the experimental results of the tests. There are fewer rejections of the
unit root null hypothesis for 7, >0.5 or 0.51<7, <0.91, excluding the case of
(k,,k,)=(20,5) in the t-test, and for all the combinations of (z,,7,), excluding
(r,,7,) =(0.01,0.02) and (0.01,0.99) in the T(p —1) test. The results of Table 1 in

7) In addition, we have conducted the simulation for the same cases of negative break sizes as
those described in footnote 4. For all the combinations of these break sizes, the obtained
results are similar to those in Tables (4), (5), and (6), except some cases in the shifts in slope
model. As |k2‘ becomes large, the empirical power increases around (7,,7,) = (0.98,0.99)
for the t-test with Scale =T"""? and for the 7(p — 1) test with Scale =1and T
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the previous section predict this failure to reject the null hypothesis in the tests.
Therefore, the results obtained in small samples precisely correspond to those in

large samples, as indicated in Table 1.
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The results for shifts in level for Scale=T""? are presented in Table 5. In both
the DF tests, when two breaks are in close proximity, except for two early breaks,
the tests are seriously biased in favor of fewer rejections of the unit root null
hypothesis. As k, or k, increase(s), the biases of the tests also become large,

. 8)
except in some extreme cases of (7,,7,).

Table 6 indicates the empirical powers
in the shifts in slope model with Scale=T""2. When we focus on the regions
03<7,<090r051<7, <0.91 for the t-test and 0.1<7, <0.9 or 0.11< 7, <0.91
for the T'(p —1) test, the rejection frequencies within these specific regions of both

the tests exhibit extremely few rejections of the null hypothesis.

8) The empirical powers increase as 7, — 0 for the case of (k,,k,)=(1.0,0.25) (the case with
large k), (7,,7,) = (0,0) for the case of (0.25,1.0) (the case with large k,), and
(71,7,) = (0.]) for the case of (1.0,1.0) (the case with large break sizes in both ).
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4. Conclusions

This study investigated how the presence of multiple structural breaks in the
stationarity alternative hypothesis affects the DF t-test and 7(p—1) test. In
addition, it derived the limiting distributions of the statistics in a model with
multiple breaks.

The behavior of the DF statistics was analyzed for two structural breaks in the
level or slope of a series over various locations and sizes of the breaks in small as
well as large samples. Consequently, some interesting results have been obtained
from the asymptotic analysis and the Monte Carlo simulation. The common
features of the results are described in the following. For two shifts in level with
Scale =1 (the “crash” alternative hypothesis in the case of two breaks ), both the
DF tests are free from the presence of breaks, which Montanes and Reyes (1999)
have reported in the single break model. For two shifts in slope with Scale =1
(the “changing growth” alternative in the case of two breaks), extremely few
rejections of the unit root null can be observed for the first break occurring in the
second half of the series or the second break occurring around the 70% point of the
series, except for large k, and small , in the t-test, and for any location of the two
breaks, except for both the breaks occurring at the beginning of the series or the
first and second breaks occurring at the beginning and end of the series,
respectively, in the 7'(p —1) test.

For two shifts in level with Scale=T"?, for large k, or k,, the unit root
hypotheses of both the tests would face fewer rejections at all the locations of the
two breaks, except for two early breaks and an early (first) break for large &, (and
any k,). For two shifts in slope with Scale=T""?, the DF tests might have few

powers against the stationarity alternative with breaks, except for cases with two
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early breaks, early and late breaks, and two late breaks in the series.

Finally, it should be noted that this study demonstrated that extremely few
rejections of the unit root null hypothesis can also happen in the DF tests when 2H
parameters (locations and magnitudes) of multiple structural breaks take various

possible values.
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APPENDIX
The proof of the two theorems is shown for the double breaks case (H =2)
because that for the multiple breaks case can be obtained along the same lines but
is tedious algebra.
To prove the theorems, some variables are defined in advance. Let e, denote

the OLS residuals in the following regression equation.
Voa=pu+n+u, t=1...T.
e,_, consists of three parts as follows:

e, =8,+g.,-h

=1y

r 3 o B 1 . -1
where g, , =d, -T"Y.d,_ =d,_ —dand/ = (f—f)Z(f—f)dm{Z(f —f)'} :
1=1 t=1

t=1
Also, S/, is

I A~
SE=8,-T"Y.8,,—o6(-1),

1=1

where S, :z p'e,_, 1s a strictly stationary and ergodic process and S is the

t=s

5=0
estimated coefficient of a time trend in the regression of S, , on (1, t). In the
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equations above, we should notice that our definitions of S, g,_;, and /,_, slightly
differ from those of Leybourne and Newbold (2000) because we regress y, , on
(1, t) whereas they regress y, on (1, t) to obtain the residuals.

fs» /1, and £, are defined based on Leybourne and Newbold (2000) as follows:

T T

;
2 2
Jo :zer’.fl :zeH’fz :zefef—l'
=

1=1 =1

Using these three variables, 6~ and p are expressed as

& =T (fy+P /=20, = /i

1. Proof of Theorem 1(a).

The test statistics are written as

T2 =17"(f, - f)E T /), (1a)
T {r(p-Di=T"(f, - T £) (2a)

To derive the limiting distributions of the statistics, we consider the probability

limits of the three terms: 77'(f, — £;), T"' f;, and 6.  The first term is
1 1 - 1 - 1 S
T (fz _fl) =T Ze[—lAel =T Zstt—lAS/r +7T" Z(g/—l _h/—l)A(gr _hr)
1=1 1=1 1=1
1 N 1 -
+T° ZSVT—IA(gz _hr) +7° Z(gr—l _hr—l )ASVT'
t=1 t=1
In the last equation, the terms are

Ty SLAS] —=a*(1+ p) , T Y (g, — ko)A, —h)=O(T™),

Tﬁ] Z‘glr—lA(gl - hl) = O(Tq )5 Tﬁ] Z(gl—l - hrfl)ASlT = Op (T7] )’
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where ——> denotes convergence in probability. Hence, we obtain
'(f = f)—to=0’(1+p) " (3a)

Next, 77" £, is
T T T T
T =T"> el =T (S.) +T" > (g b)) +2T7 Y. ST (g0 —hy).
1=1 1=1 1=1 1=1

The first and third terms in the last equation are

T_IZ(S;—] )2 —F)O-Z(l - pZ)—l’ 2T_IZS;—I(g/—l _h/—])—p)o’

and assuming that
TﬁIZ(gz-l _171-1)2 > by,
Thus,
T f—L256>(1-p*) " +b,. (4a)
For 67, it can be written as
,
G =T A =T7'(f, = /)’ /i
t=1
T T N T
=T (AS; ) +T7Y [A(g, k)] +2T7 Y AS A(g, —h,)
1=1 1=1 1=1
T2 = /)T )

Using the facts that:

Ty (AS)) —L25207 1+ p) , T Y [A(g, —h)f =0T™),

2T AS/A(g, —h)=0,(T™),
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then,
6252021+ p) ~ ot (14 p) o= p2) 4y )

= oo +2(1- p)b o7 + 1= p b, ) (5a)

Proof of ,,.

.
Tﬁ]Z(g/_l _ht—])z =T712g’z_] +T712h:2—| _2T7]th—lh/—l'
=

The first term in the right hand side is obtained as

Ty gl =T (d} +d* -2d,d)
- klzrl (I-7)+ kzzrz(l -1,)+2kk,r(1-17,)

by using
Ty dl > k(-1 + k3 (1-1,) + 2k k,(1-7,).
The second term is
7' R, =3k (1) + k(- 1,)F,
and the last term is
27N g, b, =217 (d, ) -D)Y (D, , >t~}
=2 d - - - 6lr (-1 + k(-7
Thus, we obtain
b, =k't,(1-7,)37, =37, + )+ k;7,(1-7,)(37; =37, +1)

+2kk,r,(1-7,)(3r7, 37, +1). M
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2. Proof of Theorem 1(b).

The test statistics are given by

T2 =T2(f, - F)ET £) (6a)
T(p=D=T"(f; =T f) " (7a)

The probability limits of 77 (f, — f,), 7" f;, and &~ are derived first, and then, the
proof of b,,, b,,, and b, is given. The term 77 (f, — f,) is

, ,
T_z(f'z _f;) = TﬁzZSIr—]ASrt +T722(g1—] _h/—])A(gl _h/)
=1 =1
2 L 2 T
+ Tﬁ_zStr—lA(gr - h/ ) +7 Z(gz—l - hl—] )ASIT'
t=1 t=1
Utilizing the facts that
T2Y SLAS, =0,(T7), T2 (g, —h )Mk =0,
T2y S/ A —h)=0,(T""),T7Y (g —h DAS] =0,(T'™"),
and supposing that
T_ZZ(gH —h_)Ag, —> by,
then, we obtain
T7(f, = f,)—L—>b,,. (8a)
Now, we show
3 3 Q 2 3 a 2 3 &
T2f=T7 Y (SE) +T7 ) (g —ho)? +2T7 Y S5 (g =By
1=1 1=1 t=1

In the equation above,
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T3S =0,(I7),2T7 Y. S (g, —h)=0,(T7"),

and we write

Tﬁ}Z(gH _hl—l)z = by;.

Thus,
T f, —L>b,,. (9a)
Finally,

67 =Ty A =T (fy = f) (T 1)

=T (AS]Y +T7 Y [A(g, —h) +2T7 Y AS A(g, —h,)
T (=T )7

1=1 =1

We use the following relationships.

T (AS]) —L5267(1+ p) ", 2T Y AS[A(g, —h) =0, (T7).
And we let
7> [Ag, —h)f > by

So, the limit is
A2 2 -1 blzl
6> —L520°(1+ p) +b22—b—. (10a)

23

Proof of b,,.
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T i( 8 —h)Ag =T7> (g —h.)Ad, =T g Ad, =T h_Ad,.
P
The limit of the first term in the last equation is
T2Y g Ad, > 2 r, (-1, + K, (1-1,) +kk, (1-7) (1= 7,)(T, + 1)}
Note that

T-z,T

>.Dr1!,-DU! =>"DT'\,> DT}, - DU} = > (1,7 —1,T —1+1),
t=1
Y.DI}-DU; =% DT, DT? -DU} =Y DI7,.

And then,

725 b Ad, = {2 S -Dad {2 S @ ~nd, S -0}

2 (-1 + k(-1 (1-1,)° 27, +1) + k(1 -7,)* (27, + 1)}
using the following limits.

T3 (t-0)Ad, > 27kt (1- 1) + k1, (1-7,),
73N (-1, > 127k (1-1,)° 27, + )+ k, (1-1,)* 27, + 1)},

T2y (-1 »>127"
Thus,

b, = 2! {klzrf(l—r,)z(z‘rI —1)+k221'23(1—z'3)2(2z'2 -1)
+2kk, 7,7, (1— 7)1 = 7,)(z, + 7, =)}

Proof of b,,.
T i [Ag, =n)F =T Ad? + T Y AP =2T7"Y Ad, A,
1=1
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All the terms in the right hand side are
'S Ad? =T [ DU +,DU?f — I (1- 1)+ (1 -1,) + 2k, (1= 7,),
TS AR - f (1-7,)* 21, + D) +k,(1-1,)* 27, + 1),
277" Ad,Ah,
— 2017, Qr, + D) +k (1-1,)* 21, + D} (1= 7)) +k, (1= 7,)}.
Hence, we obtain
by, = ki1, (1-7) {2 (27, —3)1—27,) +(1-7,)2r, +1)}
+K,(1- )2 (21, =3)(1-27,) +(1-7,)Q27, +1)}

+ 2k k7, (1-7){7,7,(27, =3)(1-21,) + (1-7,)27, + 1)}

Proof of b,;.

T’3i(g/_] —h_ ) =T gl +T7 Y B =277 g, b, .
p
Since the limits of the terms in the equation above are
7% gl —>127 {kﬁ (1-7)'Cr,+)+k;(1-1,)°’ (37, +1)
+2kky (1= 7,) (377 +27, + 1)},
T30, > 12 (-7, @7, + 1)+ k,(1-7,)° 27, +Df
272N g, by =6 (-7, Qe + )+ k(- 7,2z, + D],
b,y is written as

by, =3 {k,zrf’(l—rl)3 +kn,(-1,) —kk,tl(1-1,)° 217, + 71, —312)}. [ ]
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3. Proof of Theorem 3.

The test statistics are written as

(=T"'(f, = )T /)", (11a)
T(p-D)=T"(f, = )T (12a)

We first show 7' (f, — ), T f,, and 6°, and then we prove c,,, ¢,,, and ¢,,.
I I
T (= f) =T L SLAS +T7 3 (g —h)A(g, —h)
t=1 1=1
1 - 1 -
+T7' Y STAG, —h)+T7' D (g, —h_)AS,.
t=1 t=1
It is straightforward to show that
T_IZSIT—IASIT —17)_0_2(1 + p)_l> T Z(grfl - hr—] )Aht =0,
T_lzstr—lA(gt _hl) = Op(T_l/z)a T_lz(g[—l _h[—l )AS; = Op(T_l/z)'

Assuming that
T Z(g/—l - h/—l )Ag/ - Cis
then, we obtain
T7'(f, - f))—L>—c’A+p) " +c,, i=12. (13a)
Next, we show
2 2 - 2 2 L 2 2 L
I~ fi=T" Z(Slr—l)_ +T:Z(g1-1 —h_) +2T" ZSIT—l(g[—l —h_).
=1 1=1 1=1

The first and third terms in the right hand side are
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T2y (S =0,(T7), 2T S/ (g, 4 —h ) =0,(T™),
and letting
T2y (g —h.) —>cs,
then, we find that
T2 fi—L>c,,i=12. (14a)

Now, we prove

.
G =T"Y Aef+0,(T™")

P
=7 i:(AS,’)2 +77" i[A(g, —m)f +21" iAS,’A(g, —h)+0,(T™).
1=1 =1 1=1
The first and third terms are
T (AS]) —L207 (1+ p) ", 2T Y AS[ A(g, — h,)—L—0.
And let

Tﬁ] Z[A(gt _hl )]2 —>Cp-
Thus,

6 —L5207(1+p) " +cp,,i=12. (15a)

Proof of ¢ ;.

’
TﬁIZ(gH —h_)Ag, = TﬁIZgHAd/ _TilzhHAdr'
=
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The first term of the right hand side is
T3 g, \Ad, = kik, — (k, + k) (- 7)) + b, (1 - 7,)}.
In this derivation, note that
> DU/, (DU} -DU})=Y DU/, -D(z,T), =1,
where D(7,7),=1ift = 7,7 +1 and 0 otherwise. And then,
7 b Ad, =3tk 2, D)+ k, 2z, ~ Dtk 7, (1= 7)) + k7, (1 7,))
using the facts that

T-s/zz(l _1)Ad, - 2“{]{1(271 - +k,(27, —1)},

TN (-d,, > 2 (-t + k(- T7 Y (1 -1)” > 127
Thus,

¢, =—ki(1-7,)67] =31, +1)— k5 (1—7,)(675 — 31, +1)
—kk, {(l —7,)67,7, =37, + )+ (-7, )67,7, - 37, +1) - 1}.

Proof of c,.
.
T (Mg, —h)f =T Ag] +T7"> AR’ =277 Ag,Ah,.
t=1
The term 77 ) " Ag/ is

T Agl =Ty Ad} =k D(t,T), +k,D(z,T), | =k +k;,

where D(7,T),= 1ift = 7,7 + 1 and 0 otherwise. And then,
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T AR =O(T™"), 2T Y Ag, A, =O(T ™).
Hence,
c, =kl +k;.
For the proof of c,,, since i[A(g, —h,)]2 is O(1) for shifts in slope with

t=1

.
Scale=T""*, 7Y [A(g, —h)] —> 0as T —o; therefore c,, = 0. |

1=1
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